Producing Relational Database Schemata from an Object Oriented
Design

P. Fitsilis

INTRASOFT SA Dept. of Mathematics
Univ. of Patras
Patras, Greece

2 Adrianiou st.
Athens, Greece

Abstract

Although Object-Oriented Database Managemen-
t Systems provide a direct mapping between problem
domain and the way data are stored, they are not yet
as popular as Relational Database Management Sys-
tems. Storing objects m a relational database requires
fitting them into tables. In this paper, a straighifor-
ward methodology for producing a Relational Database
schema from an Object-Oriented Design is presented.
The proposed approach provides a solution for map-
pming dall object oriented constructions to tables. The
strongest features of the approach are that it yield-
s normalized schemata and can be easily automated.
Finally, a high-level algorithm and a very simple ez-
ample to dlustrate the approach and i#s benefits, are
qiven.

1 Imntroduction

Applications implemented with Object-Oriented
(OOY programming languages require persistent ob-
jects storage. Dea ing with objects persistence con-
situtes one major decision among three differing ap-
proaches, each of which could be attractive under cer-
tain circumstances [5,10]:

e flat file management, which offers rudimentary
file handling and storing capabilities

o relational database management systems, used to
built relational databases

e object-oriented database management systems,
which, based on the OO paradigm, provide a way
for storing objects without any translation be-
tween storage data structures and program data
structures

Its up to the designer to decide which approach
fits in the problem domain and to the specific applica-
tion. Flat file management is usually used in an ad hoc
way. It can offer a quick and wseful solution when the
size and complexity of the application are rather smal-
L Some programming languages are offering objects
persistence by using flat f%le management schemata,
an approach that has been proved useful and concep-
tually simple. However, as the size of the application

0-8186-6430-4/94 $4.00 © 1994 IEEE

V. Gerogiannis

A. Kameas G. Pavlides

Dept. of Computer Engineering
& Informatics, Univ. of Patras
Patras, Greece

becomes larger, the complexity of storing objects in
flat files increases rapidly. For applications of this size
it is almost impossible tc use sucgl an organization of
data.

Relational Databases (RDBs) are a mature tech-
nology, having a very sound underlying theory. Very

werful products are in use and the developers are

miliar with this technology and the every day prob-
lems.

The recently developed Object-Oriented Database
Management Systems (OODBMS) seem to offer a very
attractive solution for modelling both the problem and
the solution domains, especially when they are com-
bined with OO programming languages extended with
facilities for persistent objects handling. The problem
with OODBMS is that although this technology is e
merging, these systems are not yet mature and hence
not popular. In addition, there seems to be a lack of

eneral consensus as to what constitutes an OODBMS
1,2]. This has led to the development of a number of
different variations of the OO data modelling paradig-
m

Therefore, the Relational Database Management
Systems (RDBMS) seem to be the best solution avail-
able, since they are based both on a sound theory and
on a mature technology. At the same time RDBMS
vendors add to their products capabilities for storing
objects. Until now, however, there exists no standard,
not even consensus to this subject [4]. Consequently,
techniques for RDB design based on OO analysis have
evolved and experience has shown that they are good
and superior to other techniques [12].

Even though RDBs are a commonly used imple-
mentation solution, there are some issues that come
up when implementing an OO model; these involve
database design, the use of triggers within the con-
ceptual model, and the terface to the application
code. To these problems, various authors suggest gen-
eral approaches [6,9,11].

Furthermore, an approach for mapping an Object-
Oriented Design (OOD) to an RD schema must con-
sider the normalization principle: the concept that
cach piece of information should be stored in exact-
ly one place [7] (the simplest yet most important
goal in database design). This discipline eliminates
redundancy, simplifies the process of updating the

daisy
Rectangle

database, facilitates the maintenance of database m-
tegrity and reduces the storage requirements. Never-
theless, achieving this goal is not easy. The degree of
elimination of data redundancy is defined in a range
of normal forms:

e First normal form (INF): Each attribute repre-
sents an atomic value

e Second normal form (2NF): Tables are in INF,
and each attribute depends upon the key

o Third normal form (8NF): Tables are in 2NF, and
no attribute represents a fact about another at-
tribute

e Fourth nmormal form (4NF): Tables are in 3NF,
and two or more non-key attributes do not always
map to another non-key attribute

o Fifth normal form (5NF): Tables are in 4NF, and
two or more non-key attributes do not always map
to another non-key attribute following a join op-
eration

The disadvantage of normalization is the large num-
ber of resulting tables, which usually leads to cumber-
some coding and to performance degradation. In ad-
dition, the match between problem-domain constructs
and tables is decreased.

In this paper, a practical approach is presented to
the problem of implementing an RDB schema out of
an OOD; this solution has been applied in ORIENT
CASE Tool [8]. The advantages of the proposed solu-
tion are that a straightforward mapping from OOD
to RDB implementation is provide(i), 'ﬁle proposed
methodology can be fully automated (in fact, a high-
level algorithm is also mcluded) and its implementa-
tion yields a normalized RDB schema. It is ected
that the resulting database design will normally end
up in third normal form.

After a short introduction to OOD, the methodol-

y that can be used for mapping an OOD to a RDB
schema is described and a high-level algorithm for the
development of the initial RDB schema is presented.
The methodology is explained with the brief presenta-
tion of an example, and the paper concludes with the
future research directions of the authors.

2 Overview of Object-Orienter Design
In Object-Oriented Design there exist four major
components which have to be defined [5]:

e Problem domain component

e Human interaction component
e Task management component
e Data management component

For the definition of the problem domain compo-
nent, the analysis results are mitially used. The anal-
ysis model is composed of several layers, namely Sub-
ject layer, Class&Object layer (Class, Class&Object),

Structure layer (Generalization-Specialization struc-
ture, Whole-Part structure), Attribute layer (At-
tributes, Instance connection) and Service layer (Ser-
vices, Service connection). The analysis results are
reviewed, challenged and extended in order to become
more detailed and specific, and form the OOD prob-
lem domain component.

The strategy to design the human interaction com-
ponent consists of the following steps: user dassifica-
tion, user’s task scenarios description, command hier-
archy design, detailed interaction design, prototyping
and user interface classes design.

In order to define the task management component,
the event/driven tasks, the clock driven tasks, the pri-
ority and critical tasks, together with a co-ordinator,
to monitor each task.

The data management component is used to isolate
any impact that the data management schema may
have on the complete design mo§el. The other OOD
components are designed transparently based on the
data management schema.

OODB development is an emergin t;echnologgn
Consequently, its theory is not so well defined, prod-
ucts are not mature yet, while the developers are not
fully aware of this technology. The main advantage
is that the mapping between the problem domain and
the way the data are stored is direct. Until now the
object oriented approach has been tested for relative-
ly ‘small systems. Now it has to be proved useful and
applicable in large scale system development.

3 Mapping the OOD model to an RDB
design

In an RDB, information is stored in tables of prim-
itive types. In the OO paradigm data resides within
objects either as primitive types or as complex struc-
tures. This results to some problems when one is try-
ing to store objects in an RDB. For this reason a trans-
formation is needed in order to map the object infor-
mation structure into a table-oriented structure. This
problem is often referred to as the impendance prob-
lem [11]. The same problem occurs when a program
has too rich a set of user-defined types, which have to
be transformed to primitive data types of the DBMS.

The impendance problem yields to another prob-
lem: it creates a strong coupling between the applica-
tion and the DBMS. The database schema should be
independent from the application code and changes
the application should affect as little as possible the
database. Another problem relates to the expression
and storage of the inheritance relation in the database.

The following list summarizes the main problems of

mapping an OOD to a relational implementation of a
database:

o Mapping of the instance connections to tables

e Mapping generalization-specialization structures
to tables

o Mapping whole-part structures to tables

daisy
Rectangle

3.1 Storing Classes&Objects into a rela-
tional database

The first thing to do is to decide which Class-
es&Objects and which variables of each class must be
stored in the database. Each one of these classes will
be represented by at least one database table. To s
tore a Class&Object in the database, the following
rules must be followed:

o Assign one table to each Class&Object

e Each primitive attribute will become one column
in the table. If the attribute is complex an addi-
tional table for this attribute is added or it is split
over several columns in the table of the class.

e The primary key column will be the unique m-
stance identifier. This identifier should not affect
the user and it will be machine generated. There-
fore, each mstance of a Class&Object will be rep-
resented by a row in this table

e Each instance relation with cardinality greater
than 1 will become a new table. This new table
will connect the tables representing the objects
that are to be associated. The primary key of
these tables can be used as the key of the new
table.

3.2 Modelling
the generalization-specialization struc-
ture
The objects that should be persistent will be
mapped onto tables in the database. There exist t-
wo different approaches to solve this problem [5):

1. The inherited attributes are copied to all tables
that represent the descendant classes. No table
will represent the abstract class.

2. The abstract class is in one table of its own, to
which the tables of the descendant classes refer.

Both alternatives have advantages and disadvan-
tages. The first approach mtroduces redundancy s
ince the attributes of the superclass are inheritedy by
the subclasses. The problem is magnified when the
generalization-specialization structure has more than
two levels which i far than unusual. Furthermore,
the introduction of redundancy leads to integrity and
consistency problems, since a change to a table has to
be propagated to all related tables. However this ap-
proach is normally faster since no joining, or searching
in several tables is necessary to get mformation about
one object.

The second alternative does not result in integri-
ty problems introduced by replication of data, but
searching for object attributes is more time consum-
ing, especially when the generalization-specialization
structure is expanded in more than two levels.

In our approach, the second alternative is chosen,
in order to prevent the logical decomposition of the
subject matter.

3.3 Modelling the whole-part structure

A whole-part structure is one of the basic meth-
ods of organization that pervade all human thinking.
This structure can be viewed as an aggregation rela-
tion. Each "whole” is composed of a number of "part-
s”. Also, each whole-part relation is marked with an
amount or range, indicating the number of parts that
a whole may have and vice versa, at any given moment
in time.

It is obvious that a whole-part relation resembles
the instance connection. For this reason the whole
part relation can be mapped as an instance relation.
Therefore, each whole-part relation with cardinality
greater than 1 will become a new table. This new
table will connect the tables representing the objects
that are to be associated. The set of the primary keys
of these tables can be used as the key of the new table.

4 Creating the initial RDB Model

In order to create the relational database design
from an OODB design, first Classes&Objects must
be handled and the generalization-specialization struc-
ture must be processed (table 1) and subsequently
the whole-part structure and the instance connections
mmust be checked m order for relationships to be cre-
ated (table 2).

However, database normalization introduces issues
of low performance, because the way the database is
used is not taken into consideration.

4.1 An example

In this subsection an example showing the way ob-
jects and relations will be stored in an RDB is present-
ed. The RDB models a small part of a public domain
organization which gives licences to vehicles. The ta-
bles produced for mapping of the Classes&Objects as
well as the dependencies between them are shown in
figure 2, while m Figure 1 the OOD of the model is
depicted.

This part has four Classes&Objects (Organization,
ClerkPerson, OunerPerson, and ClerkOwner) and one
Class (Person). The Class&Object Organization be-
longs to a Whole-Part structure with Class&Object
ClerkPerson. A generalization-specialization struc-
ture exists between Class Person and Classes&Qbjects
ClerkPerson, OwnerPerson, and ClerkOuwner. All at-
tributes are considered as primitive types except at-
tribute Address which is considered as composite, with
sub-attributes StreetName, Number, PostCode, and C-
y.

The definition of each table includes the following
attrihutes:

ORGANIZATION
ORG_OID NAME
MANAGER | TELEPHONE

The address attribute is a composite attribute and
for this reason it is not included m the above table.
Instead, the following table s created:

daisy
Rectangle

/* Handle Classes&Objects */

For all persistent Classes&Objects

Create a table with the same name as Class&Object Name;

Create an attribute OID(Object ID);
Mark this attribute as primary key;
For all attributes of Class&Object

If an attribute is primitive

Create a table column with the same name;
If attribute i composite /* recursive - a composite attribute */
/* may contain other composite attributes */

Create a new table having as a name

the Class&Object_name+attribute_type;
Create an OID attribute same as parent’s table;

Mark it as primary key;

Mark it as E)reign key;

For all attributes of Class&Object
If an attribute is primitive

Create a table column with the same name;

If attribute is composite

Make the recursion on composite attributes;

/* Up to this point all tables corresponding to Class&Object */
/* and tables for composite attributes have been created */

/* Process generalization-specialization structure */

For all the generalization-specialization structures
Find root of the structure;
Traverse the structure depth first;
For all children Class&Object

Create a new column with the parent OID name;

Mark this column as a foreign key;

Table 1: Part 1 of high-level algorithm

ORGANIZATION-address

ORG_OID | STREETNAME
NUMBER POSTCODE
CITY

The Class Person does not have instances and for
this reason no new table is ceated, but the infor-
mation of this Class is included in its descendent
Classes&Objects. The table which corresponds to the
Class&Object ClerkPerson is:

ClerkPerson
CLPR_OID LEGALNAME
USERNAME | AUTHORIZATION
EGINDATE ENDDATE

The attribute Address is handled in the same way
as attribute Address of Class&Object Organization.

OwnerPerson
[OWPR_OID [LEGALNAME [TELEPHONE |

The Class&Object ClerkOwner does not have at-
tributes of its own, except those inherited from Class-
es&Objects ClerkPerson and OuwnerPerson. The table
corresponding to this object is shown below.

ClerkOwner

Finally, the whole-part relation between Organiza-
tion and ClerkPerson is modelled with the following
table:

WP-ORGANIZATION-CLERKPERSON
[ORG.OID | CLPR_OID]

The fields ORG_OID, CLPR_OID, OWPR_OID
and CLOW_OID are antomatically- generated object

daisy
Rectangle

/* Check the Whole Part structure for creating relationships */

For all Whole Part relationships
If the Whole Part relation cardinality is many to many
Create a new table with columns the primary keys of both tables;
I the Whole Part relation cardinality is one to many
Create a new column to the table with many cardinality,
which corresponds to the OID of the table with the one cardinality;
If the Whole Part relation cardinality is one to one
Create a new column to one of the tables,
which will contain the other table OID;

/* Check the instance connections for creating relationships */

For all nstance connections
If the instance connection cardinality i many to many
Create a new table with columns the primary keys of both tables;
If the instance connection cardinality is one to many
Create a new column to the table with many cardinality,
which corresponds to the OID of the table with the one cardinality;
If the instance connection cardinality is one to one
Create a new column to one of the tables,
which will contain the other table OID;

Table 2: Part 2 of high-level algorithm

identifiers. The database schema produced using an
OOD will normally end up in third normal form. A
database design is i third normal form, if and only
if a row consists of a unique object identifier togeth-
er with a mmber of mutually independent attributes.
Furthermore, since OO models are modelling reality,
objects are identified uniquely and attributes are as-
signed where they naturally belong. Therefore, since
reality is normalized as such, a good object model will
also be normalized.

5 Conclusions

In this paper, the mapping from ax 20D to an RD-
B schemaﬁs been presented. The OOD method used
is the one introduced by Coad/Yourdon [5], which is
one of the most popular OO methodologies. The map-
ping from this method to RDB design seems to be
straightforward and the resulting RDB schema is in
third normal form. Guidelines for handling the per-
sistent object, storing the inheritance structure, the
whole-part structure and the mstance connection are
presented, together with a high-level algorithm that
derives the initia]l RDB schema. The presented ap-
proach can be antomated and has been implemented
in the ORIENT CASE tool [8].

We believe that RDBs will continue to be dominan-
t, despite the evolutions in OO development, because
of the impendance of changing existing database mod-
els (Hierarchical, Network). For homogeneity reasons,
in the course of time the alternative approaches for
objects persistence handling will converge rather than
differentiate. Consequently, our future research direc-

tion will focus on the adjustment of RDBs to offer an
OO interface, since the complete replacement of RDB-
s by OODBs seem higly unprobable. In the context
of this research, we expect to have soon result on the
efficiency of the presented methodology when applied
to small and medium-size databases.

References
[1] M. Atkinson, F. Bancilhon and D. DeWitt, The
Object-oriented Database system manifesto. Pro-
ceedings of ACM/SIGMOD International Confer-
ence on Management of Data, 1990.

2] D. Beech, Groundwork for an Object Database
Model In Reasearch Directions m Object-
Oriented Programming (B. Shriver and D. Wegn-
er D - eds), MIT Press, 1987, pp 317-354.

B] M. R Blaha, W. J. Premerlani and J. E.
Rumbaugh, Relational database design using an
object-oriented methodology. Communications of
the ACM, 31(4), 1988.

[4] T. Bloom and S. B. Zdonik, Issues o the design of
object-oriented database programming lanquages.
Proceeding of OOPSLA 87, Orlando, USA, 1987.

[5] P. Coad and E. Yourdon, Object-Oriented Design,
Second Edition. Yourdon Press, 1991.

[6] M. K. Crowe, Object systems over relational
databases. Information and Software Technology,
Vol.35, No. 8, 1993.

daisy
Rectangle

7]

ORGANIZATION

ORGANIZATION

address

ORGANIZATION

~..~

CLERKOWNER

Figure 1: Dependencies among the RDB schema tables

C. J. Date, An hiroduction to Database Systems,
Vol. 1. Addison-Wesley, 1986.

P. Fitsilis et al, ORIENT User’s Guide. INTRA-
SOFT 1993.

I. Jacobson, Object-Oriented Software Engineer-
ing. Addison- Wesley, 1992.

M. Loomis, Making objects persistent. Journal of
Object-Oriented Programming, October 1993.

J. Martin and J. Odell, Object-Oriented Analysis
& Design. Prentice-Hall, 1992.

W. J. Premerlani, M. R. Blaha, J. E. Rumbaugh
and T. A. Varwig, An object oriented relational
database. Communications of the ACM, 33(11),
1990.

daisy
Rectangle

Organization

Person

¢ Name

o Manager
o Address
o Telephone

® | egalName
® Address

1.1

ClerkPerson

OwnerPerson

® UserName

® Autorization
@ BeginDate

® EndDate

@® Telephone

O Takelicense

A

N

ClerkOwner

Figure 2 OOD of the model used in the example

daisy
Rectangle

